Greg + Code (Greg Baugues) thumbnail

Greg + Code (Greg Baugues)

OpenAI Codex CLI vs Claude Code - There’s a Clear Winner

Why Cloud Code Outshines OpenAI’s Codeex: A Developer’s Perspective

Hey there! I’m Greg, a developer who has spent hundreds of dollars experimenting with AI-powered coding assistants over the past few months. Lately, I’ve made Cloud Code my go-to coding agent, especially when starting new projects or navigating large, older codebases. With the recent launch of OpenAI’s Codeex, I was eager to give it a shot and pit it against Cloud Code in a head-to-head comparison. Spoiler alert: Codeex fell short in several key areas.

In this blog post, I’ll share my firsthand experience with both tools, highlight what OpenAI needs to improve in Codeex, and explain why developer experience is crucial for AI coding assistants to truly shine.


First Impressions Matter: The Developer Experience

Right from the start, Codeex’s developer experience felt frustrating. Although I have a Tier 5 OpenAI account—which is supposed to grant access to the latest GPT-4 models—Codeex informed me that GPT-4 was unavailable. Instead of gracefully falling back to a supported model, the system simply failed when I tried to use GPT-4 Mini.

To make matters worse, the interface for switching models was confusing. I had to use a /help command to discover a /model command with a list of options ranging from GPT-3.5 to Babbage and even DALL·E (an image generation model that doesn’t belong here). Most of these options didn’t work with the product, so I was left guessing which model to pick. This was a baffling experience—why show options that don’t actually work? It felt like a basic user experience bug that should have been caught during testing.

For developers, the first interaction with a tool should be smooth and intuitive—no guesswork, no dead ends. Sadly, Codeex made me jump through unnecessary hoops just to get started.


API Key Management: A Security and Usability Concern

Cloud Code shines in how it manages API keys. It securely authenticates you via OAuth, then automatically stores your API key in a local config file. This seamless process means you can focus on coding without worrying about environment variables or security risks.

Codeex, on the other hand, expects you to manually set your OpenAI API key as a global environment variable or in a .env file. This approach has several drawbacks:

  • Security Risk: Having a global API key in your environment exposes it to any local script or app, increasing the chances of accidental leaks.
  • Lack of Separation: You can’t easily dedicate a separate API key for Codeex usage, which complicates cost tracking and project management.
  • Inconvenience: Managing environment variables across multiple projects can become tedious.

Cloud Code’s approach is more secure, user-friendly, and better suited for developers juggling multiple projects.


Cost Management: Transparency and Control Matter

AI coding assistants can get expensive, and managing usage costs is critical. Cloud Code offers helpful features to keep your spending in check:

  • /cost Command: View your session’s spend anytime.
  • /compact Command: Summarize and compress chat history to reduce token usage and lower costs.

Codeex lacks these features entirely. There is no way to check how much you’ve spent during a session or to compact conversation history to reduce billing. This opacity can lead to unpleasant surprises on your bill and makes cost management stressful.


Project Context Awareness: Smarter by Design

One of Cloud Code’s standout features is its ability to scan your project directory on startup, building an understanding of your codebase. It lets you save this context into a claw.md file, so it doesn’t have to reanalyze your project every time you launch the tool. You can even specify project-specific preferences and coding conventions.

Codeex, by contrast, offers zero context-awareness upon startup. It simply opens a chat window with your chosen model and waits for input. This puts the burden on the developer to manually introduce project context, which is inefficient and time-consuming.

For a coding agent, understanding your existing codebase from the get-go is a game-changer that Codeex currently misses.


User Interface: Polished vs. Minimal Viable

Cloud Code’s command-line interface (CLI) is thoughtfully designed with clear separation between input and output areas, syntax highlighting, and even color schemes optimized for color-blind users. The UI feels intentional, refined, and comfortable for extended use.

Codeex feels like a bare minimum implementation. Its output logs scroll continuously without clear visual breaks, it lacks syntax highlighting, and it provides only rudimentary feedback like elapsed wait time messages. This minimalism contributes to a frustrating user experience.


Stability and Reliability: Crashes Are a Dealbreaker

Cloud Code has never crashed on me. Codeex, unfortunately, has crashed multiple times, especially when switching models. Each crash means reconfiguring preferences and losing all previous session context—a major productivity killer.

Reliability is table stakes for developer tools, and Codeex’s instability makes it feel unready for prime time.


Advanced Features: MCP Server Integration

Cloud Code supports adding MCP (Machine Control Protocol) servers, enabling advanced use cases like controlling a browser via Puppeteer to close the feedback loop by viewing changes in real-time. This kind of extensibility greatly expands what you can do with the tool.

Codeex currently lacks support for MCP servers, limiting its potential for power users.


The Origin Story: Why Polished Tools Matter

During a recent Cloud Code webinar, I learned that Cloud Code began as an internal tool at Anthropic. It gained traction within the company, prompting the team to polish it extensively before releasing it publicly. This internal usage ensured a high-quality, battle-tested product.

In contrast, Codeex feels like it was rushed to market with minimal internal adoption and testing. With just a couple of weeks of internal use and intentional polish, Codeex could improve dramatically.


Final Thoughts: Potential vs. Reality

I have not even touched on the core coding ability or problem-solving skills of Codeex’s models, such as GPT-4 Mini plus codecs. It’s possible that, once the bugs and UX issues are ironed out, Codeex could outperform Cloud Code at a lower cost.

But right now, the frustrating user experience, instability, poor key management, and lack of cost transparency prevent me from fully engaging with Codeex. A well-designed developer experience isn’t just a nice-to-have; it’s essential to unlocking the true power of AI coding assistants.


What OpenAI Needs to Do to Bring Codeex Up to Par

  1. Graceful Model Fallback: Automatically switch to a supported model if the default is unavailable.
  2. Clear and Accurate Model List: Only show models that actually work with the product.
  3. Secure and Convenient API Key Management: Implement OAuth or a dedicated API key setup for the tool.
  4. Cost Transparency: Add commands or UI elements to track session spending and manage token usage.
  5. Project Context Awareness: Automatically scan and remember project details to save time and costs.
  6. Stable, Polished UI: Improve the CLI interface with clear input/output zones, syntax highlighting, and accessibility options.
  7. Reliability: Fix crash bugs to ensure smooth, uninterrupted workflows.
  8. Advanced Feature Support: Enable MCP servers or equivalent extensibility to boost functionality.

Conclusion

AI coding assistants hold incredible promise to revolutionize software development, but only if they respect developers’ time, security, and workflows. Cloud Code exemplifies how thoughtful design and polish can make a tool truly empowering.

OpenAI’s Codeex has potential, but it needs significant improvements in developer experience and stability before it can compete. I look forward to seeing how it evolves and hope these insights help guide its growth.


Thanks for reading! If you’ve tried either Cloud Code or Codeex, I’d love to hear about your experiences in the comments below. Happy coding!

← Back to Greg + Code (Greg Baugues) Blog